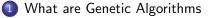
Genetic Algorithms

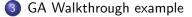
Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

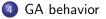
North Carolina A & T State University

September 6, 2021

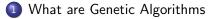

(日)

э


1/41


September 6, 2021

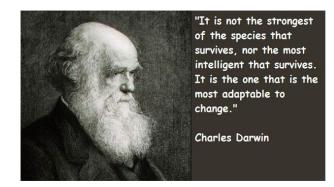
2 Mechanics of Genetic Algorithm



æ

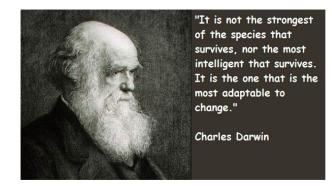
< □ > < 同 > < 回 > < 回 > < 回 >

Outline



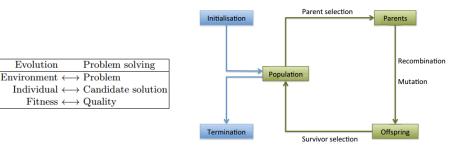
Mechanics of Genetic Algorithm

- 3 GA Walkthrough example
- 4 GA behavior


э

Charles Darwin

<ロト <問 > < 注 > < 注 > ・ 注


Charles Darwin

Survival of the fittest

イロト 不得 トイヨト イヨト

GA Metaphor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What are Genetic Algorithms?

Genetic Algorithms

GA are search algorithms based on the mechanics of natural selection and natural genetics.

- Developed by John Holland in 1970s at the University of Michigan.
- Holland Goal was to
 - Design Artificial systems that imitate mechanisms in natural systems.
 - Explain the internal processes of natural systems.

Central theme of GA is robustness, and the balance between efficiency and efficacy.

GA Design Principles

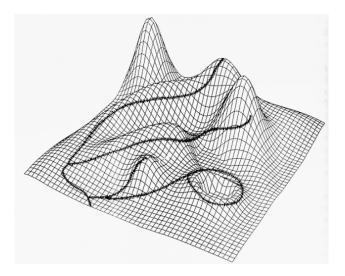
- Robustness. Ability to adapt to different conditions and problems seamlessly.
 - Costly redesigns can be reduced.
 - Systems can perform their functions for longer.
 - GA are not restrictive to assumptions concerning: continuity, existence of derivative, uni-modality, etc.
- Efficacy. Getting the task done.
- Efficiency. Getting the task done with good performance.

GA are theoretically and empirically proven to provide robust search in complex spaces

- 4 回 ト - 4 三 ト

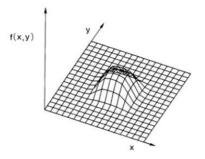
GA Applications

- Criminal- Likeness Reconstruction
- Trip, Traffic and Shipment Routing
- Evolvable Hardware
- Automotive Design
- Encryption and Code Breaking
- Finance and Investment Strategies

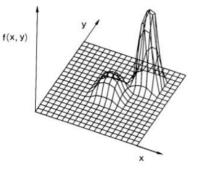

< A > < E

September 6, 2021

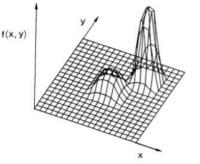
8/41


•

Searching for good solutions on a rough landscape


Existing main optimization methods are: calculus, enumerative, and random search.

- Calculus-based methods.
 - Indirect. Get the gradient and set it equal to zero.
 - **Direct.** Also known as hill climbing where you start from random position and move in the direction related to the local gradient.


Problem with calculus-based methods

- Locality in scope.
- Rely on the existence of the gradient (well defined slope values).

Problem with calculus-based methods

- Locality in scope.
- Rely on the existence of the gradient (well defined slope values).

Not robust due to the assumption of continuity, uni-modality, the gradient existence

Existing main optimization methods

• **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.

< □ > < 同 > < 回 > < 回 > < 回 >

Existing main optimization methods

• **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.

12/41

• Not practical for infinite search spaces.

Existing main optimization methods

- **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.
 - Not practical for infinite search spaces.
 - Lack the efficiency.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Existing main optimization methods

- **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.
 - Not practical for infinite search spaces.
 - Lack the efficiency.
- Dynamic Programming. is enumerative method.

・ 何 ト ・ ヨ ト ・ ヨ ト

Existing main optimization methods

- **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.
 - Not practical for infinite search spaces.
 - Lack the efficiency.
- Dynamic Programming. is enumerative method.
 - Suffer from curse of dimensionality.

Existing main optimization methods

- **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.
 - Not practical for infinite search spaces.
 - Lack the efficiency.
- Dynamic Programming. is enumerative method.
 - Suffer from curse of dimensionality.

Existing main optimization methods

- **Enumerative schemes.** simply scan every point in the search space by evaluating the objective function.
 - Not practical for infinite search spaces.
 - Lack the efficiency.
- Dynamic Programming. is enumerative method.
 - Suffer from curse of dimensionality.

Not robust due to inefficiency

Existing main optimization methods

• Random search. simply randomly search and save the best.

(日) (四) (日) (日) (日)

September 6, 2021

13/41

Existing main optimization methods

• Random search. simply randomly search and save the best.

13/41

• Not practical for infinite search spaces.

Existing main optimization methods

- Random search. simply randomly search and save the best.
 - Not practical for infinite search spaces.
 - Lack the efficiency.

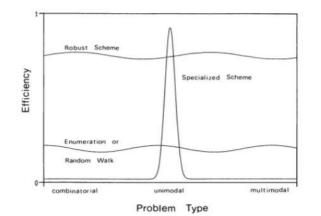
- 4 回 ト 4 ヨ ト 4 ヨ ト

Existing main optimization methods

- Random search. simply randomly search and save the best.
 - Not practical for infinite search spaces.
 - Lack the efficiency.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Existing main optimization methods


- Random search. simply randomly search and save the best.
 - Not practical for infinite search spaces.
 - Lack the efficiency.

Not robust due to inefficiency

✓ ⓓ ▷ ◀ Ξ ▷ ◀ Ξ ▷
September 6, 2021

13/41

Efficiency and Robustness

A robust scheme work well across a broad spectrum of problem types

イロト 不得 トイヨト イヨト

September 6, 2021

э

14 / 41

The goals of optimization

We should distinguish between

- Process of optimization. How to improve?
- Optimal point. Destination

September 6, 2021 15 / 41

The goals of optimization

We should distinguish between

- Process of optimization. How to improve?
- Optimal point. Destination

September 6, 2021

15/41

In practice and most complex problems it would be nice to be perfect but it is good if we can only improve.

Outline

(日) (四) (日) (日) (日)

э

Simple Genetic Algorithm

- I P(0) ← Generate-Random-Population()
- while Not-Terminated? do
 - $P(t) \leftarrow Evaluate-Population(P(t))$
 - ② $P(t) \leftarrow Reproduction(P(t))$
 - **③** $P(t+1) \leftarrow Generate-Offspring(P(t))$

17 / 41

Interpretation (1978) (1978

GA is different if four ways:

- **G** GA works with coding the variable (i.e., parameter set).
- O GA search from population of points
- GA use a pay-off (fitness) function.
- GA use probabilistic transition rules.

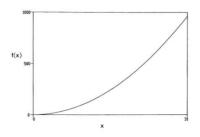
GA is different if four ways:

GA works with coding the variable (i.e., parameter set).

September 6, 2021

18/41

- GA search from population of points
- GA use a pay-off (fitness) function.
- GA use probabilistic transition rules.

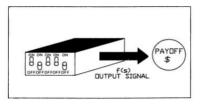

Three main operations in GA:

- Reproduction
- Cross over
- Mutation

For a function $f(x) = x^2$ where $x \in [0, 31]$ a population of five bit strings will evolve through time **Ex.** Initial population of size n = 4

- 01101
- 11000
- 01000
- 10011

Remember base-x transformation: $(10011)_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 19$ $(53596)_{10} = 5 \times 10^4 + 3 \times 10^3 + 5 \times 10^2 + 9 \times 10^1 + 6 \times 10^0 = 53596$



Working with a population decrease the opprtuinity to stuck in local minima (multi-modal problems)

September 6, 2021

19/41

For a function $f(x) = x^2$ where $x \in [0, 31]$ single instance from the population have a fitness value.

Ex.

- 00001 is less fit than 01101
- 11000 is more fit than 01101

Working with fitness eliminate the need for an auxiliary information such as gradient or tables

GA uses probabilistic transition rule to move from population t to population t+1.

Can this be considered as a random search?

(日) (四) (日) (日) (日)

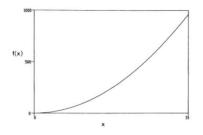
GA uses probabilistic transition rule to move from population t to population t+1.

Can this be considered as a random search?

Ans.

- No, GA use random choice as a tool to guide the search towards region of search space with **likely improvement**
- GAs are not classified as randomized search schemes.

Walk through a simple genetic algorithm


For a function $f(x) = x^2$ where $x \in [0, 31]$ a population of five bit strings will evolve through time **Ex.**

Initial population of size n = 4

- 01101
- 11000
- 01000
- 10011

Operators:

- Reproduction
- Crossover
- Mutation

Reproduction Operator

Reproduction

Is the process in which individual strings are copied according to their objective function values (fitness).

- f measures profit we want to maximize.
- string x with high f(x) value has higher probability to have more offsprings.
- To get a reproduction candidate simply spin a roulette wheel


Ex.

No.	String	Fitness	% of Tota		
1	01101	169	14.4		
2	11000	576	49.2		
3	01000	64	5.5		
4	10011	361	30.9		
Total		1170	100.0		

Reproduction Operator

In selecting potential parents we usually have a trade off between exploration and exploitation.

Exploitation

Concentrate on individuals on a certain region of the search space.

- Restricting search space.
- Less diversity.
- Reach local optimum.

Exploration

Concentrate on diverse individuals over different regions of the search space.

Solution: Trade-off, give finite probability to worse individuals to become

Crossover Operator

Crossover

is a genetic operator used to combine the genetic information of two parents to generate new offspring. Also known as mating operator.

イロト イポト イヨト イヨト

Crossover Operator

Crossover

is a genetic operator used to combine the genetic information of two parents to generate new offspring. Also known as mating operator.

- Members of newly produced strings are mated at random
- An integer position k is selected at random from $[1, \ell 1]$
- The two parents are cut at position k and the resulting substrings are swapped

Crossover Operator

Crossover

is a genetic operator used to combine the genetic information of two parents to generate new offspring. Also known as mating operator.

- Members of newly produced strings are mated at random
- An integer position k is selected at random from $[1, \ell 1]$
- The two parents are cut at position k and the resulting substrings are swapped

Ex. Let k = 4

 $\begin{array}{c} \text{BEFORE CROSSOVER} \\ \text{A}_{1} = 0 \ 1 \ 1 \ 0 \ | \ 1 \\ \text{A}_{2} = 1 \ 1 \ 0 \ 0 \ | \ 0 \\ \text{A}_{1}' = 0 \ 1 \ 1 \ 0 \ 0 \\ \text{A}_{2}' = 1 \ 1 \ 0 \ 0 \ 1 \\ \text{STRING 1} \\ \text{STRING 2} \\ \text{STRIN$

Mutation Operator

Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of a population to the next.

26 / 41

Mutation Operator

Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of a population to the next.

- Has very small probability.
- Every bit in a string of length ℓ can flip (mutate) with probability 0.001
- Aim to avoid local minima by preventing the population from becoming too similar to each other

Mutation Operator

Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of a population to the next.

- Has very small probability.
- Every bit in a string of length ℓ can flip (mutate) with probability 0.001
- Aim to avoid local minima by preventing the population from becoming too similar to each other

```
Ex.
1010010
1
1010110
```

GA Initialization

- Initialization should be kept simple in most GA applications
- The first population is seeded by randomly generated individuals.
- Problem-specific heuristics can be used in this step, to create an initial population with higher fitness.

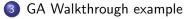
- 4 回 ト 4 ヨ ト 4 ヨ ト

GA Termination

The following options are commonly used :

- The maximally allowed CPU time elapses.
- The total number of generations reaches a given limit.
- The fitness improvement remains under a threshold value for a given period of time (i.e., for a number of generations or fitness evaluations).
- The population diversity drops under a given threshold.

・ 何 ト ・ ヨ ト ・ ヨ ト


Notes

- The introduced operators use randomness, however it is a directed randomness.
- You efficiently build new solutions from the best partial solutions of previous trials.
- Think of it like a group of people attending academic conferences, who has greater chance to speak, how people can exchange ideas.

Outline

Mechanics of Genetic Algorithm

< □ > < 同 > < 回 > < 回 > < 回 >

э

GA a simulation by hand

For a function $f(x) = x^2$ where $x \in [0, 31]$ a population of 4 strings.

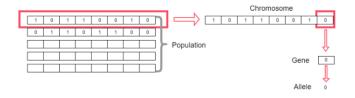
String No.	(1	Pop	niti oula ndo	m	y)		f(x) x^2	pselect, $\frac{f_i}{\Sigma f}$	Expected count $\frac{f_i}{\tilde{f}}$	Actual Count from Roulette Wheel
1	0	1	1	0	1	13	169	0.14	0.58	1
2	1	1	0	0	0	24	576	0.49	1.97	2
3	0	1	0	0	0	8	64	0.06	0.22	0
4	1	0	0	1	1	19	361	0.31	1.23	1
Sum							1170	1.00	4.00	4.0
Average							293	0.25	1.00	1.0
Max							576	0.49	1.97	2.0

3

イロン イヨン イヨン

GA a simulation by hand

Reproduction, and Crossover with no mutation.


Mating Pool after Reproduction (Cross Site Shown)	Mate (Randomly Selected)	Crossover Site (Randomly Selected)	F		Nev	w	n	x Value	f(x) x^2
0 1 1 0 1	2	4	0	1	1	0	0	12	144
1 1 0 0 0	1	4	1	1	0	0	1	25	625
1 1 0 0 0	4	2	1	1	0	1	1	27	729
10011	3	2	1	0	0	0	0	16	256
									1754
									439
									729

- The population average fitness improved from 239 to 439.
- The maximum fitness also improved from 576 to 729

< □ > < 同 > < 回 > < 回 > < 回 >

Terminology Comparsion

Natural	Genetic Algorithm				
chromosome	string				
gene	feature, character, or detector				
allele	feature value				
locus	string position				
genotype	structure				
phenotype	parameter set, alternative solution, a decoded structure				
epistasis	nonlinearity				

September 6, 2021 33 / 41

2

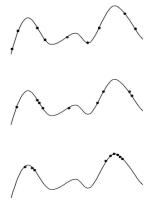
<ロト <問ト < 目ト < 目ト

When to use GA

- Highly multimodal functions
- Discrete or discontinuous functions
- High-dimensionality functions, including many combinatorial ones Nonlinear dependencies on parameters (interactions among parameters)
- Often used for approximating solutions to NP complete combinatorial problems
- DON'T USE if a hill-climber, etc., will work well

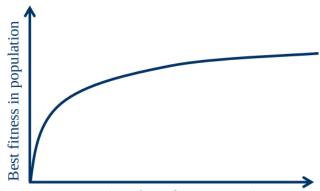
Outline

Mechanics of Genetic Algorithm



э

イロト イヨト イヨト イヨト

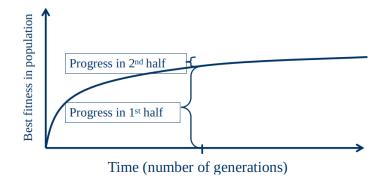

Typical behavior of an EA

Phases in optimizing on a 1-dimensional fitness landscape

- Early phase: quasi-random population distribution
- Mid-phase: population arranged around/on hills
- Late phase: population concentrated on high hills

Typical run: progression of fitness

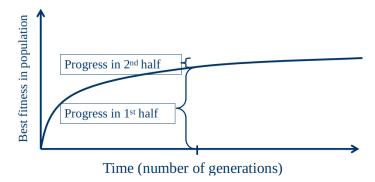
Time (number of generations)


Typical run of an EA shows so-called anytime behavior

< 4 ₽ × <

September 6, 2021

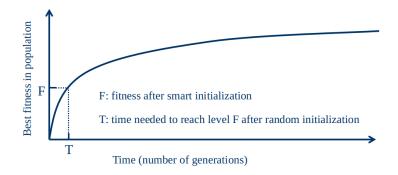
37 / 41


Are long runs beneficial?

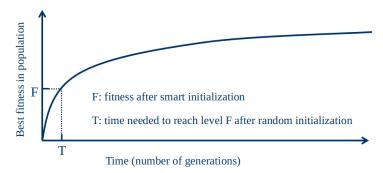
< □ > < 同 > < 回 > < 回 > < 回 >

э

Are long runs beneficial?



- it depends on how much you want the last bit of progress
- it may be better to do more shorter runs


< 4[™] >

э

Is it worth expending effort on smart initialization?

Is it worth expending effort on smart initialization?

September 6, 2021

39 / 41

- possibly, if good solutions/methods exist.
- care is needed, see chapter on hybridization

References

- Goldenberg, D.E., 1989. Genetic algorithms in search, optimization and machine learning.
- Michalewicz, Z., 2013. Genetic algorithms + data structures= evolution programs. Springer Science & Business Media.

< □ > < □ > < □ > < □ > < □ > < □ >

GA behavior

イロト イヨト イヨト イヨト

September 6, 2021

æ

41 / 41

